

ESSEX COUNTY OFFICE OF THE MANAGER

> 7551 Court Street · P.O. Box 217 · Elizabethtown, New York 12932 Telephone (518) 873-3332 · Fax (518) 873-3339

Daniel L. Palmer County Manager Linda M. Wolf Purchasing Agent

TO:	All Bidders
-----	-------------

- **FROM:** Linda Wolf, CPA, Purchasing Agent
- **DATE:** November 7, 2016

SUBJECT: Addendum #2 GROUNDWATER MONITORING

This Addendum, issued to bid document holders of record, indicates changes to the bid documents for the *GROUNDWATER MONITORING* Bid Opening November 16, 2016.

Please see the following Questions and Answers

A complete PDF copy of the Horace Nye Nursing Home Limited Subsurface Investigation Report is available upon request (2,500 pages). The cover letter dated October 1, 2015, Figure 1, Figure 2, Table 1 and Appendix 1 are attached for reference.

1) The RFP indicates that all purge fluid will be stored in 55-gallon drums for disposal by the County. Will the drums also be provided by the County, or should the cost of drums be included in our estimate?

Answer - Groundwater monitoring company responsible to supply containers for purged fluid.

2) How deep are the groundwater monitoring wells and what is the well diameter?

Answer - See Appendix 1 attached.

3) The RFP indicates that samples will be collected with dedicated equipment. What equipment is currently in the well for purging groundwater?

Answer - Dedicated equipment to be provided by Groundwater monitoring contractor (this contract), there is no equipment in the wells currently. The intent of the term dedicated equipment is equipment used for the purpose of collecting groundwater that has been completely cleaned prior to each sampling event to insure no contamination of sampling from other outside sources where such equipment was previously utilized.

4) Based on the language in the proposal, it appears that all wells can be accessed by a vehicle?

Answer - See Figure 2 attached.

5) Does a Heron Dipper-T groundwater level meter have to be used or other water level meters acceptable?

Answer - An equivalent model may be utilized.

6) Are the quarterly reports acceptable in CD format or would hard copies required? How many copies?

Answer - One hard copy (paper) and one electronic copy (pdf) is required for each reporting period.

7) For PP Total Metals EPA Method 200.7 includes many analytes or individual analytes—do you mean that the RCRA 8 analytes need to be analyzed or just specific analytes?

Answer - See item #3 of letter dated 3/30/16 from NYSDEC to Essex Centers.

8) For Phenolic Compounds, please confirm the correct EPA method number, I believe it should be 420.4 instead of 42.1.

Answer - See item #3 of letter dated 3/30/16 from NYSDEC to Essex Centers.

9) How deep are the wells and what is the distance between each well? Do you have previous measurements for water table levels?

Answer - For depths of wells and distance between wells, See Appendix 1 and Figure 2 attached. For previous measurements of water table levels see water level measurements sketch dated 6/1/16 attached.

10) Have the wells been surveyed? Do we have base maps?

Answer - No survey has been completed, however, See Appendix 1 and Figure 2 attached.

11) Regarding the construction of the wells. Are they 1" or 2"? Needed to determine the amount of groundwater.

Answer - No survey has been completed, however, See Appendix 1 and Figure 2 attached.

12) Can you give the site address?

Answer - Essex County Government Center, 7551 Court Street, Elizabethtown, NY 12932.

13) Is there access to electricity at the site?

Answer - See Figure 2 attached. The residential style building located between MW-4 and MW-5 is the workshop for the Essex county Buildings and Grounds department, 120 volt electrical power is available at that location for limited use by groundwater monitoring contractor.

14) Is testing for dissolved oxygen, pH, conductivity, or any other parameters required?

Answer – See item #3 of attached letter dated 3/30/16 from NYS DEC to Essex Centers.

15) Is low-flow sampling required?

Answer – See item #3 of attached letter dated 3/30/16 from NYS DEC to Essex Centers.

16) Is it possible to park a vehicle next to the wells, or will materials and equipment need to be brought to the site on foot?

Answer – See Figure 2 attached.

CORPORATE OFFICE Mountainville, NY (800) 829-6531

PO Box 37, 70 Pleasant Hill Road Mountainville, NY 10953

> New York State Department of Environmental Conservation, Region 5 – Division of Water, 1115 Route 86, Ray Brook, NY 12977

Attention: Tamara J. Venne

(845) 534-5959 FAX: (845) 534-5999 www.tectonicengineering.com

October 1, 2015

RE: W.O.: # 6310.01 HORACE NYE NURSING HOME, 81 PARK STREET, ELIZABETHTOWN, NEW YORK LIMITED SUBSURFACE INVESTIGATION REPORT (SIR),

Dear Ms. Venne:

This letter report presents our findings and conclusions from the limited subsurface investigation (SI) performed on July 20 through 22 and July 30 through 31, 2015 at the Horace Nye Nursing Home located at 81 Park Street in Elizabethtown, New York (the "Site"). This SI was performed to evaluate whether or not the quality of groundwater located downgradient of sanitary seepage pits has been impacted by organic compounds, metal constituents and phenolics that were reported above protection of groundwater standards in sediment samples collected and analyzed by EnviroScience Consultants, Inc. during a Phase II Environmental Site Assessment (ESA), dated November 1, 2013.

This limited SIR includes:

- a. Site Description;
- b. Boring, well installation and Sampling Methodology and protocols;
- c. Typed Soil Boring and Monitoring Well Installation Logs;
- d. Summary of field sampling and observations;
- e. Sample location plan;
- f. Summary of test results compared to NYSDEC standards;
- g. Copies of all laboratory chain-of-custody forms and analytical results;
- h. Findings and Conclusions; and
- i. Recommendations

October 1, 2015

Ms. Tamara J. Venne

1.0 SITE BACKGROUND

As indicated above, in connection with a real estate transaction between the County of Essex and the Buyer, EnviroScience Consultants Inc. (EnviroScience), on behalf of their client (the "Buyer"), scoped and also performed a Phase II ESA on November 1, 2013. The scope of services for the Phase II ESA included a subsurface investigation in which sediment samples from seepage pits were collected and analyzed to evaluate whether or not wastewater discharges of oil, grease and phenolics had any adverse impacts on the sanitary system used by the nursing home. The findings from the Phase II investigations conducted by EnviroScience concluded that eleven of the seepage pits required remediation (see **Figure 1**). It should be noted that groundwater sampling was not included as part of the Phase II ESA scope of services. Essex County reported these releases as a spill to the NYSDEC and NYSDEC subsequently stipulated a requirement that Essex County by virtue of the County's transaction terms with the Buyer perform a groundwater investigation at the Site.

Essex County then retained Tectonic Engineering and Surveying Consultants, P.C. (Tectonic) to develop and implement a Sampling and Analytical Testing Plan (SATP) to fulfill the NYSDEC requirement. The SATP was approved by NYSDEC on February 5, 2015, and this was subsequently finalized on February 10, 2015. The SATP included details pertaining to the installation of groundwater monitoring wells, groundwater sampling, and laboratory analysis. Details of the field investigation and sampling are discussed in Section 2.0 below.

2.0 FIELD INVESTIGATION AND SAMPLING

Tectonic's boring subcontractor, QCQA Laboratories, Inc., mobilized to the Site on July 20, 2015, and again on July 30, 2015 to install monitoring wells in accordance with the approved SATP. The first installation event took place between July 20 and July 22, in which three (3) of the monitoring wells were installed. Remobilization to the site on July 30, 2015 occurred to install the final two (2) monitoring wells that could not be installed during the first event due to access restrictions. A Tectonic Geologist with OSHA 40-hour HAZWOPER certification was present full time to log the subsurface conditions and attend the monitoring well installations. As shown in **Figure 2**, monitoring well locations were designated as MW-1 through MW-5 and correspond to borings B-1 through B-5. MW-1 was installed to evaluate background conditions, while wells MW-2 through MW-5 were installed at select downgradient locations. The first four feet of MW-4 were hand excavated in order to clear the top of on-site seepage pits.

Ms. Tamara J. Venne

3

October 1, 2015

Borings were advanced via CME 550X drill rig equipped with hollow stem auger to depths of up to thirty six (36) feet below ground surface (bgs). Samples were collected through continuous split spoon sampling and Standard Penetration Testing (SPT). Subsurface soils were classified using the United Soil Classification System (USCS) and generally consisted of coarse to fine sand with variable amounts of clayey silt and gravel. Groundwater levels were observed at approximately 20 feet bgs. Detailed descriptions of the subsurface and groundwater levels measured at individual borings are included on the boring logs attached as **Appendix I**.

Soils on each split spoon were visually and olfactorily inspected and screened with a calibrated MiniRAE 3000 PhotoIonization Detector (PID) for the presence of contamination. Soils were temporarily stored on clean plastic sheeting for evaluation. PID readings and observations were recorded on the boring logs (**Appendix I**).

At each boring location, a 2-inch diameter PVC groundwater monitoring well was installed to depths up to 34 feet bgs (see **Appendix II**). The wells were designated MW-1 through MW-5. The bottom approximately fifteen (15) feet of the wells were screened with #10 slot PVC and packed with clean #0 sand from the bottom of the well to approximately two (2) feet above the screened interval. Above the sand pack, the well was sealed with a one (1) foot bentonite plug and finished with a concrete grout seal. Flush mount casings were installed and concrete pads were poured around each well. Each well was developed until the water within each well ran clear. All developing fluid was placed into 55 gallon drums and stored at the Site for off-site disposal (see **Figure 2**). Monitoring Well Installation logs are included in **Appendix II**.

Tectonic's Geologist collected groundwater samples from each well on July 31, 2015. Prior to collecting the samples, depth to water measurements were obtained using a Testwell water level indicator and the wells were purged by removing approximately three (3) well volumes of fluid from the well. Groundwater was collected via dedicated balers and the resulting samples were placed into laboratory prepared containers and placed into a cooler on ice. The samples were shipped via standard chain-of-custody protocol to CHEMTECH located in Mountainside, New Jersey, a NYSDOH ELAP certified laboratory, for the chemical analysis outlined in the NYSDEC approved SATP.

Photographs documenting boring advancement, well installation, and conditions at the Site are included in **Appendix III**.

October 1, 2015

Ms. Tamara J. Venne

4

3.0 ANALYTICAL TEST RESULTS

The samples arrived at CHEMTECH intact, apparently undisturbed and within proper the holding times and temperature range. The samples were analyzed for Volatile Organic Compounds (VOCs), Semi-volatile Organic Compounds (SVOCs), Phenolic Compounds, Mercury and Selenium.

The analytical test results were compared to the Technical & Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values, Table 1 guidelines for groundwater (drinking water Class (GA)) (TOGS 1.1.1). Summary comparison tables of detected analytes are presented in **Table 1**. A copy of the analytical test results is attached in **Appendix III**.

4.0 FINDINGS & CONCLUSIONS

The following section presents the findings and conclusions of our site investigation conducted on July 20-22, 2015 and July 30-31, 2015.

- 1. No field observations including PID levels, odors or staining indicating the potential presence of contamination were observed in the soils or groundwater at any of the five (5) monitoring wells.
- 2. Analytical test results indicate that one (1) VOC, acetone, was detected above laboratory limits but below its respective TOGS 1.1.1 ambient water quality standard in samples designated MW-1 (the upgradient well) and MW-3. Acetone was not detected in any of the other samples.
- 3. Analytical test results indicate that the VOC, toluene, was detected above the TOGS 1.1.1 ambient water quality standards in samples designated MW-1 (the upgradient well) and MW-2. Toluene was not detected at the remaining three wells.
- 4. The analytical test results indicate that concentrations of metals in the groundwater samples were as follows:
 - a. The metal mercury was detected above laboratory reporting limits but below its respective TOGS 1.1.1 ambient water quality standards in the samples designated MW-1 (the upgradient well), MW-3 and MW-4.
 - b. The metal, mercury, was detected above its respective TOGS 1.1.1 ambient water quality standard in the sample designated MW-2. Mercury was not detected at MW-5.

Ms. Tamara J. Venne

5

- October 1, 2015
- c. The metal selenium was detected above laboratory reporting limits but below its respective TOGS 1.1.1 ambient water quality standards in the samples designated MW-1 (the upgradient well) and MW-5. Selenium was not detected at the remaining three wells.
- 5. Analytical test results indicate that total phenolic compounds were detected at levels above the TOGS 1.1.1 ambient water quality standard in the sample designated MW-3. Phenolic compounds were not detected at the remaining four wells.
- 6. Based on a review of the laboratory results, it appears that the groundwater at the downgradient wells MW-2 and MW-3 may have been impacted by discharges of toluene, mercury and phenolic compounds to the seepage pits. No groundwater impacts were observed at the downgradient wells MW-4 and MW-5.
- 7. Toluene concentrations at the upgradient well, MW-1, indicate that there is a possible upgradient source of toluene. Toluene is used as a gasoline additive, as a solvent for paint, and can be found in cements, solvents, spot removers and antifreezes. Toluene is released into the atmosphere principally from the volatilization of petroleum fuels and toluene-based solvents and thinners, and from motor vehicle exhaust. Thé concentrations of toluene in the groundwater at MW-1 and MW-3 may be influenced by adjacent and nearby roadway and parking lot and utility infrastructure or, as of this time, an otherwise undetermined source.

5.0 <u>RECOMMENDATIONS</u>

In consideration of the findings and conclusions presented in Section 4.0 of this report, Tectonic has the following recommendations:

- 1. Tectonic recommends that Essex County proceed with the site specific requirements set forth by NYSDEC which includes the removal of sediment from impacted seepage pits (see **Figure 1**).
- 2. Tectonic recommends that additional rounds of groundwater sampling and analyses for toluene, mercury and total phenolics be performed at wells MW-1 (upgradient), and MW-2 and MW-3 (the two downgradient wells with TOGS 1.1.1 exceedances) after sediment removal is completed.
- 3. Tectonic further recommends that the initial sampling and analytical testing event occur within three (3) months of the aforementioned sediment removal and then proceed biannually for a period of three (3) years thereafter. At the conclusion of the three (3) year sampling period, the cumulative analytical testing results should be evaluated and further recommendations should be provided.

October 1, 2015

Ms. Tamara J. Venne

6.0 LIMITATIONS

The site investigation services provided by Tectonic have been performed in general accordance with industry standards. Our professional services have been performed using the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental engineers and geologists practicing in this or similar situations. Our interpretation of the field data is based on good judgment and experience. However, no matter how qualified the environmental engineer or detailed the investigation, conditions cannot always be predicted beyond the points of actual sampling and testing. No other warranty, expressed or implied, is made as to the professional advice included in this report.

6

If you have any questions or comments, please contact the undersigned.

Sincerely, TECTONIC ENGINEERING & SURVEYING CONSULTANTS P.C.

Kristine Garbarino, P.G. Project Manager / Senior Geologist

G:\Mountainville\Environmental\6310 Essex County - Horace Nye Home\Field Well Installation & Sampling\Report

Atta	ch	ma	nte	•
Alla	UII	IIIC	1113	•

Remediated
Well Locations
ory Detected Compounds
Illation Logs
l Test Results

FIGURE 1

FIGURE 2

.

TABLE 1

Table 1. S	Horac	e Nye Nu	rsing Ho	me	ompou	inds					
		MW-1	MW-2	MW-3	MW-4	MW-5					
						00470.00					
LAB ID:		G3170-02	G3170-03		G3170-05						
SAMPLE ID: LAB ID: COLLECTION DATE: TOGS 1.1.1 Table 1 Ambient Water Quality Standard G3170-02 (3170-02) G3170-03 (3170-03) G3170-04 (3170-05) G3170-05 (3170-06) COLLECTION DATE: Markin Mater Quality Standard G3170-02 (7/31/2015) G3170-03 G3170-04 G3170-05 G3170-06 SAMPLE MATRIX: Wg/L Wg/L Yater Water Water Water Water Water Water Water Water Water Wg/L µg/L ND ND<											
Horace Nye Nursing Home Elizabethtown, New YorkBizabethtown, New YorkSAMPLE ID: LAB ID: COLLECTION DATE: SAMPLE MATRIX: UNITS:TOGS 1.1.1 Table 1 Ambient Water Quality StandardMW-1MW-2MW-3MW-4MW-5G3170-02 (G3170-02 (G3170-03G3170-04G3170-05G3170-06G3170-06G3170-06COLLECTION DATE: SAMPLE MATRIX: UNITS:TOGS 1.1.1 Table (G3170-02G3170-02G3170-03G3170-04G3170-05G3170-06Volatile Organic Compounds (VOCs)WaterWaterWaterWaterWaterWaterµg/LToluene519.4ND48.7NDNDMetalsMetalsU.7.70.2351.90.2750.311ND											
UNITS:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L					
Volatile Organic Comp	ounds (VOCs)										
Toluene	5	19.4	ND	48.7	ND	ND					
Metals											
Mercury	0.7	0.235	1.9	0.275	0.311	ND					
Phenolic Compounds											
Phenolics	1	ND	ND	24 J	ND	ND					

Qualifiers:

ND - Not Detected

NS - No Standard

J - Data indicates the presence of a compound that meets the identification criteria.

The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

Notes:

Analytes that exceed their criteria as set forth by TOGS 1.1.1 are bolded and highlighted in yellow.

APPENDIX |

TEC	: T	ONIC	EN	GINEE	RING &	SURVEYING .C.	PROJECT:	Horad	ce Nye Nursi	ng Home			ING No			
1EU	//		' co	NSULT	ANTS P	.C.	LOCATION:	Elizal	bethtown, N	(1		Г	SHEET	No. 1 of 2	
CLIENT	- E	ssex Co	untv					T	DATE	TIME	DEP	тн	INSPECTOR:	Chris C		
		OR: QC		aborat	ories I	nc		GROUND	7/30/15	10:00 am	19,1		DRILLER:		Burrowbr	idae
METHOD					DIA.		DEPTH	A GRO					SURFACE ELE		596	
POWER					4 1/4		TO 30'	MON. V	VELL D] <] YES		 O			rth estim	1
ROT. DF					4 1/4		то 50		N DEPTH:	15' TO	30'		DATE START:	7/30		
CASING							то	WEATH			2: 80°	 F	DATE FINISH:	7/30	~	
SPLIT S					2"	0	то 30'			Not Encount			UNCONFINED	COMPRESS		1
			ioment	equipo	ed w/ s	afety hamme	r			A ARE INFERR			1 2	TONS/FT)	4 5	Í
		T	pritori	SAM							Τ	*	PLASTIC	WATER	LIQUID	
(il l	L/FT.	PENETRATION RESISTANCE (BL/6 IN.)		DEC				DE	SCRIPTIO	N		гітно∟обУ*	LIMIT % C	ONTENT %	LIMIT % ∆	
DEPTH (FT.)	N OR MIN./FT	ETRA ISTA L/6 II	1PLE 1BER	돈		IOISTURE UNIFIED			OF			ð	10 20		40 50	i
	z	RES (B	SAMPLE NUMBER	ENGTH (IN.)	RQD (%)	MOISTURE UNIFIED		N	IATERIAL			Ē	PENETRA	TANDARD		ī
		6											10 20	30	40 50	
1 - 8	8	5 3	S-1	8		M SM	Bwn c-f S/ Silt (PID=		e c-f Gravel,	trace Claye	у [F
2		3						obbiii)								F
3 1		3	• •				3" Same (PID=0pp	om)							
3-1	16	13	S-2	14		M SM	11" Tn c-f Silt (PID=	SAND, I	ittle c-f Grav	el, trace Cla	vey 🗄					ſ
4		25 18					-									F
5 - 3	36	22 14	S-3	14.5		M SM	Bwn-tn c-1 Silt (PID=		little c-f grav	el, trace Cla	vey [.					591
6		22 28					-	,			· ·					-
7 4	14	24	S-4	13		M SM			little c-f Grav	el, trace Cla	yey 🗄					-
8	• •	20 14	.				Silt (PID=	Uppm)			ŀ	·				
		5 7			ľ		Bwn-tn m-	f SAND	trace Claye	v Silt						
9 1	15	8	S-5	13		M SP	(PID=0ppi		liuoo olayo	y ent						–
10		7 8					-]			
11 1	18	8 10	S-6	16		M SP	Same (PII	D=0ppm))							F
12		10		ļ			_				i.					-
13 - 1	10	5 9	S-7	18		M SP	Same									Ļ
'	19	10 8	3-1	10			Bottom 7" dark band			alternating lig	ght &		·]]			
14		5			1		7	<i>,</i> ,		wal traca	:					[
¹⁵ - 1	18	9 - 9	S-8	13,5		M SP	Clayey Sil		trace c-f Gra ppm)	ivei, liace			••••••••••••••••••••••••••••••••••••••	•••••		
16		8				·	-				· ·					-
17 - 2	22	11	S-9	17		M SP	Bwn-tn m- (PID=0pp		trace Claye	y Silt	. .					╞
18		11 9									E					
		4 6	a ·-			W SP	10" Same				_ :					
.	13	7	S-10	19		W SP	9" Gy c-f Silt (PID=		ace f Gravel	, trace Claye	y 🔻 🗄					
20		7				W SP	7" Bwn-tn	m-f SAN	ID, trace Cla	iyey Silt			· . · · · · · · · · · · · · · · · · · ·	•••••	. [
21 - 1	13	5_	S-11	19			(PID=0ppi . 12" Gy m-	m) f SAND.	trace Claye	y Silt	. .		•			-
22		9 6				W SP	(PID=0ppi									╞
23 _ 1	16	8	S-12	19.5		W SP	Gv m-f SA	ND. trac	e Clavev Sil	t (PID=0ppn	1) [Ļ
24		8 10								/						
		5					7									
25 L REMARI	KS [.]	<u> </u>		l		l	1				ŀ			<u></u>	<u> </u>	Lə/

								PROJECT No. 6310.01	ROP	RING I		R_1			
TE	CT	ONIC			RING &	SURV	EYING	PROJECT: Horace Nye Nursing Home			10.	ا - ب			
			00	10021		,		LOCATION: Elizabethtown, NY			SI	HEET	No. 2	of 2	
CLIE	NT: E	ssex Co	unty					······································		UNCONF	NED CON (TO	APRESS	STREM	IGTH	
CON	FRACT	OR: QC	QA La			Inc.	r			1.	2	3	4	5	(FT.)
Ê	/FT.	, ION		·····	PLES		SS.	DESCRIPTION	*۲ 10	PLASTIC LIMIT %	W/ CON	TER		DUID	NOI
DEPTH (FT.)	N OR MIN./FT.	ETRAT ISTAN L/6 IN	SAMPLE NUMBER			MOISTURE	UNIFIED SOIL CLASS.	OF	LITHOLOGY*	10 10	20	30 4		∆ 50	ELEVATION (FT.)
Щ Н	N OF	PENETRATION RESISTANCE (BL/6 IN.)	SAN NUM	LENGTH (IN.)	RQD (%)	MOIS	Sol U	MATERIAL	ПТН	PEN	STAI	NDARD	VS/FT.)		ELI
	13	6	S-13	21		w	SP	Same (PID=0ppm)		10	20	30 4		50	
26		WOH													-
27	6	2 -	S-14	24		w	SP	Gy m-f SAND, trace Clayey Silt (PID=0ppm)		Ý					F
28		11 3													-
29	9	4 5	S-15	20.5		w	SP	Same (PID=0ppm)							ŀ
30		5													_566.0
31_		-						End of Boring at 30'							F
32		-													-
33		-													-
34		-													Ļ
35		-													_561.0
36		-													 -
37		-													
38		-													
39		-													
40		_													_556.0
41															
42															Γ
43															-
44		_													F
45		-													-
	;	-				•									_551.0
46		-													F .
47		_													-
48		-													-
49		~		-				· · ·							- ·
50		-													_546.0
51								· · ·						-	-
52		-					•								F
53		-													F
54															F
55	RKS:									<u></u>					_541.0

1	.01	ONIC	° co	NSULT	ANTS P.	URVEYIN C.	F	LOCATION:	Elizab	ethtown, N	NY		1			Г	SHEET	No. 1 c	of 2	
CLIE		ssex Co	untv				l			DATE	T	TIME	DE	PTH	INSPE	I_ CTOR:		Callinar		
		OR: QC		ahorato	ories. Ir				GROUND WATER	7/21/15		1:05 AM		.75'	DRILLE			Leonhar		
				****	DIA.		DEF	Ϋ́Н	GRC WA	7/21/15		12:53		.45'			VATION		594.0	
	ER AU				4 1/4"	0	 T(MON. W									arth esti		
	DRILL						т		SCREEN	N DEPTH:	15	' то				START:	<u> </u>	1/15		
CASI							т	0	WEATH	ER: Clea	r	TEM	-: 80	°F	DATE	FINISH:	7/2	1/15		
	T SPO	 ON:			2"	0	T	o 30'	DEPTH	TO ROCK:	Not	Encount	ered'				COMPRES	S. STREN	GTH	
550X	Centra	l Mine Equ	ipment	equipp	ed w/ sa	fety hamr	ner		*CHANG	ES IN STRA		RE INFERR	ED		1	2	3	4 €	5	Ĺ
		z		SAMF	PLES									Ł	PLAST		WATER	LIQ		
DEPTH (FT.)	N OR MIN./FT.	ATIO NCE		REC	ov.	щ Ш	SOIL CLASS.		DES	SCRIPTIO	ON			LITHOLOGY*			ONTENT 9		IT % -∆	ATIC
РТН	RM	NETRATI ESISTANC (BL/6 IN.)	SAMPLE NUMBER	۲, E		MOISTURE	L CI			OF				보	10 	20	30	-1	i0 	
BC	0 N	PENETRATION RESISTANCE (BL/6 IN.)	SA	LENGTH (IN.)	RQD (%)	Tow 1	so		M	ATERIAI	L				• F 10	ENETRA 20	TANDARI TION (BL) 30	OWS/FT.)	60	
		WOH						3" Asphalt				1			Ť	$-\ddot{ }$	Ť	1		
1	- 8	3 5	S-1	9		M S	м	Rd-bwn c- Clayey Silf	r SAND, : (PID=0p	little c-f Gi pm)	ravel	, trace			•					F
2		8 13						Bwn c-f SA			vel t	race Clav	/ev			\uparrow	\rightarrow			-
3	- 49	17	S-2	16		M s	м	Silt		10 0 1 014			-,							-
4		32 25		·				Bottom 3"	(PID=0p	om)									N	Ļ
5		24 26						Bwn c-f SA	AND. little	e c-f Grave	əl. tra	ice Silty								_589
	- 55	29 22	S-3	17		M S	M	Clay, rock)							
6		33	,				-													t
7	- 61	29 32	S-4	6		мs	м	Same (PID)=0ppm)											Þ
8		22 10					_												1	╞
9	- 23	11	S-5	5		м s	м	Same (PIE)=0ppm)							•				╞
10		12 11																		_584.
11	10	6 10		_				Dura na f C		an Clavay	Cilt	(DID~0pr	(m)							
	- 19	9	S-6	7		MS		Bwn m-f S	AND, tra	ce clayey	Sit	(ΡΙΔ–υρμ	ин <i>)</i>			Λ				
12	c <u> </u>	4							(0410			N:14								ſ
13	- 10	6 -	S-7	17.5		M S	P	Bwn-gy m- (PID=0ppr		trace Clay	yey a	JIIC			Í					F
14		6																		F
15	- 12	5 7	S-8	17		M S	P	Same (PID)=0ppm)											_579
16		· 7								-										Ļ
17	10	6 6	• •	10		M s		Same												L
	- 13	7	S-9	19		w	r	Same								1				
18		2											Ţ							Γ
19	- 16	6 10	S-10	17		w s	P	Gy m-f SA	ND, trac	e Clayey S	Silt (F	PID=0ppn	n) ¯			•				F
20		7																	. .	_574
21	- 11	4	S-11	24		w s	P	Same (PI)=0ppm)						. ₩					F
22		8 .																	ŀ	F
23	- 10	4	0 10	19		w s	_Р	Same (PI)=00000											Ļ
	- 10	5	S-12	19		. 5	r	Same (PIL	z–∩hhiu)						I					
24		4														\setminus				[
25								this boring i	a likely	worked -	otivez	material	tuo to	ite are				····		569

								PROJECT No. 6310.01			RINC	2 N		3_2			
TE	ECT	ONIC	EN CC	IGINEE	RING &	SURV P.C.	EYING	PROJECT: Horace Nye Nursing Home				<i>,</i> , ,	.	J-2		·	
								LOCATION: Elizabethtown, NY					SH	IEETI	No. 2 (of 2	
CLIE	NT: E	ssex Co	unty								UNC	ONFIN	ED CON	IPRESS	STREN	IGTH	
CON	TRACT	OR: QC				Inc.	r						2	3	4	5	ET.)
.T.)	/FΤ.	NOL UC		DEC	PLES		SS.	DESCRIPTION		*	PLA: LIMI		WA CONT	TER ENT %		UID	ELEVATION (FT.)
DEPTH (FT.)	N OR MIN./FT.	ITRA ISTAN L/6 IN	SAMPLE NUMBER			TURE	UNIFIED SOIL CLASS.	OF		DLO(20 ;	8 30 4		- △ 50	EVAT
DEP	N OF	PENETRATION RESISTANCE (BL/6 IN.)	SAM NUM	LENGTH (IN.)	RQD (%)	MOISTURE	SOIL	MATERIAL		гітногоду*	•	PENE	STAN TRATIO	IDARD N (BLOV	VS/FT.)	•	ELE
	18	13	S-13	18		w	SP	Same (PID=0ppm)			1	•	20 :	30` 4		50	
26		12 15															-
27	- 20	10 10 -	S-14	24		w	SP	Same (PID=0ppm)				•					ŀ
28		13 3										/					-
29	- 15	8 -	S-15	19		w	SP	Same (PID=0ppm)									-
30		11		ļ					Ţ								_564.0
31	-	-						End of Boring at 30'									
32	-	-															-
33	_	-															
34	-	_															
35	-	_															559.0
36	_																
37																	
38	-	-									æ						F
39	-																-
40																	-
	-	-									•••••	•••••	• • • • • • • •				_554.0
41	-	_										-					F .
42	-	-															-
43	-	-															-
44	-	-															L
45	-	-															_549.0
46	-	-						•					:	,			-
47	-																. -
48	-	-															-
49	-	-															
50	-																_544.0
51.	-																-
52	-										•					•	-
<u> </u>	-	-															_
5. 54	_	.															_
49 50 51 52 53 54 55 8 8 8 8 8 8 8 8 8 9 55 8 8 9 9 9 9 9	·																_539.0
REM	ARKS:										iP.						

		ONIC	00	NSULT	RING & ANTS F			LOCATION:	Elizat	ethtown, N	Y					SH	EETN	lo. 1 of	2	
CLIE	NT: F	ssex Co	untv							DATE	ТІ	ME	DEPTH	INS	PECTOF	J		allinan		
		OR: QC		aborat	ories.	nc.			GROUND	7/20/15	12	:50	20.85'	DRI	LLER:	Jo	ohn Le	onhard	lt ·	
		ADVANCIN	~~~~		DIA.	1	DE	PTH	GR(GR		-			SUF	RFACE E	LEVAT	TION:	59	4.0	
POW	ER AU	GER:			4 1/4	•	0	TO 30'	MON. W	VELL	X YES			DAT	TUM:	Goog	gle Ea	rth est	imate	, ,
ROT	DRILL	:			1		-	то	SCREE	N DEPTH:	15'	то	30'	DAT	TE STAR	:T:	7/20/	15		
CASI	NG:					1	-	то	WEATH	IER: Clear		TEMP:	80° F	DAT	E FINIS	H:	7/20/	15		
SPLI	T SPO	ON:			2"		0 -	то 30'	DEPTH	TO ROCK:	Not En	counter	eď'	UN		D COM		STRENG	тн	
550X	Centra	l Mine Equ	ipment	equipp	ed w/s	afety h	ammer		*CHANC	GES IN STRAT	A ARE I	NFERRE) [.] .		1 2	: 3	3. 4	5		Í
		zω		SAM	PLES								*	PLA	ASTIC AIT %	WAT	TER FNT %	LIQU	ID	Ì
DEPTH (FT.)	OR MIN./FT.	PENETRATION RESISTANCE (BL/6 IN.)	шс	REC	OV.	Ц	UNIFIED SOIL CLASS.		DES	SCRIPTIC	N		LITHOLOGY*		₩ — — 10 2	6	<u> </u>		·	
PTH	RMI	IETR SIST BL/6	SAMPLE	ENGTH (IN.)	9.0	MOISTURE	UNIFIED			OF			PH		+	STAN		`		ណ៍ ក
В	z	REP DE	SAUN	(IN	RQD (%)	MOI	sc		IVI	ATERIAL				•	PENET	RATION	N (BLOW			
		WOH						Dum of C			traco	Clayov							Ì	
1	- 9	5 - 4 -	S-1	9		М	SM	Silt (PID=		e c-f Gravel	, uace	Clayey							ŀ	-
2		4												÷					ŀ	-
3	- 32	17 15	S-2	11		М	SM	Bwn c-f S/ Silt (PID=0		e c-f Gravel	, trace	Clayey					•		-	-
4		5							oppiny										-	-
5		6 5		-7		м	SM	Same (PII)=0ppm											_589
	- 9	4 3	S-3	7		w	SIVI								\mathbb{N}					
6		6							A.) (771	(0)									ſ	-
7	- 27	11 - 16	S-4	7		w	GM	Gy c-f GR		ome c-f Sar	id, trace	e Claye							ŀ	-
8	<u> </u>	20 5														/				-
9	- 16	9	S-5	12		м	SM	Bwn-gy c- Clayey Sil		some c-f G	ravel, ti	race			•					-
10		7 6							נ (רוט–טן	ppin)				÷						_584
11		10 8					~	0												_
	- 16	8	S-6	15		м	SM	Same												
12		3		<u> </u>						(0.1)				· · ·						-
13	- 10	4 -	S-7	16		м	SP	Gy c-f SAI (PID=0ppi	ND, trace m)	e f Gravel, ti	race CI	ayey Si	[· · ·	Ý					-
14		7																		-
15	- 10	5	S-8	17		M	SP							· · · · · · · · · · · · · · · · · · ·						_579
16		5 6				Ŵ		Same (PII	D=0ppm)	1					$\left \right\rangle$					-
		7 7						0 (D)												L
17	- 15	8	S-9	17		М	SP	Same (Pli	u=uppm)	I										1
18		6		<u> </u>										•		K				-
19	- 24	12 12	S-10	17		м	SP	Lgt bwn c∙ (PID=0ppi		trace Claye	ey Silt)				
20		10		ļ					-					·:		¥				_574
21	- 18	8	S-11	19		М	SP	Top 3" Sa					¥		•					-
22		10 .		ļ		W.	SP'	Bottom 16	6" Gy c-f	SAND, trac	e Claye	ey Silt			/				-	F
		3									4 /DID	000								L
23	- 12	6	S-12	17		W	SP	Gy c-t SA	ND, Trace	e Clayey Sil	ι (PID=	oppm)			T					
24		6					<u> </u>								V					Ī
25		4		<u> </u>			<u> </u>	this boring i						·	to #h-		<u></u>	<u> </u>		_569

								PROJECT No. 6310.01	BOR	ING	No.	B- 3			
TE	CT	ONIC	CO	GINEE	RING &	SURV P.C.	EYING	PROJECT: Horace Nye Nursing Home							
								LOCATION: Elizabethtown, NY				SHEET			
		ssex Co	-							UNCON	IFINED C	OMPRESS ONS/FT)	6. STREM	IGTH	
CON	TRACT	or: Q(T	TT			Inc.	T			1	2	3	-+	5	Ē
(; H	ЛFТ.	L NCE		3	PLES COV.		SS.	DESCRIPTION	۲ ۲	PLASTI LIMIT %	c /	VATER NTENT %		DUID	ELEVATION (FT.)
DEPTH (FT.)	N OR MIN./FT.	ETRA IISTA	SAMPLE NUMBER			MOISTURE	UNIFIED SOIL CLASS.	OF	LITHOLOGY*	10	20	30		-2 50 1	EVAT
DEI	iô N	PENETRATION RESISTANCE (BL/6 IN.)	SAN	LENGTH (IN.)	RQD (%)	MOIS	N IIOS	MATERIAL	E	• PI	ST ENETRAT	ANDARD ION (BLO	WS/FT.)		
	10	6	S-13	12		w	SP	Bwn c-f SAND, trace Clayey Silt (PID=0ppm)	10	20	30	40 8	50	
26		6													F
27	- 13	6 7	S-14	23		w	SP	Gy c-f SAND, trace Clayey Silt (PID=0ppm)							F
28		8 5								· /					F
29	- 11	5 6	S-15	18		w	SP	Same (PID=0ppm)							Ļ
30		8								· · · · · · · · · · · · · · · · · · ·				ļ	_564.0
31	-	-				×		End of Boring at 30'							_
32	-	-													
33	-	-													
34		-													
35		_													_559.0
36		_													_000.0
37															-
38	•	-													-
39															-
		-													-
40		-										••••			_554.0
41		-													-
42															-
43		_													-
44		_													-
45		-									••••				_549.0
46		-					•	•							-
47		-													F
48		-													-
.49		-													-
50		-													_544.0
51		-													-
52															
53		-													
54															
55															E20.0
	RKS:		I						<u>l</u>	<u></u>	<u></u>	<u></u>	<u></u>		_539.0

.

								PROJECT NO	o. 6310.0)1		B	OR	INC	3 N	0. E	3-4			
TE	ECT	ONIC	EN CO	GINEEF NSULT	RING & S ANTS P.	URVE C.	YING	PROJECT:	Horac	e Nye Nursir	ig Home									
								LOCATION:	Elizab	ethtown, NY						SF	IEETN	lo. 1 of	2	
CLIE	NT: E	ssex Co	unty						UN RI	DATE	TIME	DEF	тн	INSF	ECTO	R: C	hris C	allinan		
CON	TRACT	'OR: QC	QA La	aborate	ories, Ir	nc.			GROUND WATER	7/30/15	15:57	25.	69'	DRIL	LER:	J	ames I	Burrow	bridg	e
ЕТН	OD OF /	ADVANCIN	IG BOR	ING	DIA.		DE	PTH	<u>ج</u> ق					SUR	FACE	ELEVA	TION:	60	02.0	
POV	/ER AU	GER:			4 1/4"		0	TO 36'	MON. W	ELL 🛛] YES			DAT				th esti	mate	
ROT	. DRILL	:			<u> </u>	ļ		то		N DEPTH:	19' TO	34			E STAI		7/30/			
	ING:				2"	ļ		TO	WEATH			* 80°	F				7/30/	15 STRENG	атн	
	IT SPO				1			то 36'			Not Encounte			0.10	•	(TON	IS/FT)			Î
550×	(Centra	I Mine Equ	uipment	SAMF		fety ha	ammer		*CHANG	ES IN STRAT	ARE INFERRE				STIC	.	3 4 H	4 5 LIQL		ELEVATION (FT.)
Ê	./FT.	PENETRATION RESISTANCE (BL/6 IN.)		REC			SS.		DES	CRIPTIO	N		гітногосу*	LIM	T % ← — -		ENT %		٢%	
DEPTH (FT.)	N OR MIN./FT.	NETRATIC ESISTANC (BL/6 IN.)	SAMPLE NUMBER			MOISTURE	UNIFIED SOIL CLASS.			OF			10L0	1	0 2	20 : 	30 4	0 50)	E V
DEP	NOF	RES (B	SAN	ENGTH (IN.)	RQD (%)	NOIS	Soll		M	ATERIAL			Ē	•		TRATIO	IDARD N (BLOV			
		<u> </u>					·							1	0 2	20 :	30 4	0 50)	
1	-		4																	-
2	-		S-1			м	SM	Bwn c-f SA Silt (PID=0		e c-f Gravel,	trace Clayey	y								-
3	_		1					5 III (1 ID-0	,ppm)											-
4																				L
		1						- (D)												_597.0
5	- 2	1	S-2	6		м	SM	Same (PIC)=0ppm)											
6		5				•				(0)										-
7	- 15	8	S-3	18		м	SP	Bwn-tn c-f Silt (PID=0		race f Grave	I, trace Clay	ey			•					-
8	·	7																		-
9	- 12	5 -	S-4	14		м	SM	Bwn-tn c-f Clayey Sill		ittle m-f Gra	vel, trace									-
10		9						Ciayey Oil		pin)							ļ			_592.0
11	- 24	14 9	S-5	14		м	SM	Same (PID)=()nnm)											-
12	- 24	15 16	3-3	. 14					oppin)											
		14						Bwn-tn c-f	SAND S	some c-f Gra	vel trace						N			[
13	- 34	17 17	S-6	10		м	SM	Clayey Silt	t (PID=0p	opm)										-
14		15 5				м	SM	3" Same (I	PID=0nn	m)										F
15	- 20	10 10	S-7	16.5						ND, trace C	layey Silt					.				_587.0
16	•	9 15				M	SP	(PID=0ppr												-
17	- 27	13	S-8	16		м	SP	Bwn-tn c-f Silt (PID=0		race f Grave	el, trace Clay	vey								F
18		14 13							փիլլլ)											Ļ
19	47	5 7	6.0	00		M	SP			trace Claye	y Silt					1				Ļ
	- 17	10 14	- S-9	20		м	32	(PID=0ppr								\mathbb{N}				582.0
20		23												••••						
21	- 34	17 17.	S-10	17		M	SP	Same (PID)=0ppm)											F
22		17						1								/	1.			F
23	- 21	9 12	S-11	23		м	SP	Same (PI	D=0ppm)											╞
24		12	ļ																	F
25		7												. <u></u>	<u></u>	. .			<u></u> .	_577.0

BORING LOG 6310.01.GPJ TECTONIC ENG.GDT 8/17/15

								PROJECT No.		E	3OF	RIN	GΝ	0. I	B-4			
Έ	CT	ONIC	EN CO	GINEE NSUL1	RING 8 ANTS	SURV P.C.	EYING	PROJECT:	Horace Nye Nursing Home	╡	-		- ••		*			
								LOCATION:	Elizabethtown, NY					SI	HEET	No. 2 (of 2	
JEN	IT: E	ssex Co	unty							······		UN		ED CON (TOI	APRESS	STREN	GTH	
ONT	RACT	0R: QC	QA La	aborat	ories,	Inc.								2	3	4	5	
;	Ŀ.	Sщ		1	PLES	T	6		DECODIDITION		۲*	PLA	STIC		TER TENT %	LIC	UID IT %	
(AN. A	TAN(5 IN.)	上氏	REC		ЯE	UNIFIED OIL CLAS		DESCRIPTION OF		LOG		×		<u></u>		-∆ 50	
į	N OR MIN./FT.	PENETRATION RESISTANCE (BL/6 IN.)	SAMPLE NUMBER	LENGTH (IN.)	RoD (%)	MOISTURE	UNIFIED SOIL CLASS.		MATERIAL		LITHOLOGY*		+	+	1	+	ŀ	
		1	1		<u>م</u> ر	1						•		TRATIC	NDARD N (BLO) 30	VS/FT.) 10 5	0	
6	21	11 9	S-12	21		м	SP	Same (PID=0	ippm)	¥				T				
7		10 11				м	SP	5" Same	· · · · · · · · · · · · · · · · · · ·									F
	21	10 8	S-13	16		w	SP	Clavev Silt	SAND, trace f Gravel, trace					Þ				F
8		3						8" Bwn m-f S. (PID=0ppm)	AND, trace Clayey Silt									F
⁹ -	10	4 6	S-14	24		w	SP	Bwn-tn m-f S/ (PID=0ppm)	AND, trace Clayey Silt				K					┢
ᅆ		11						(i ib oppin)					h					_572.
1		-											$ \rangle$					ŀ
2		-											$ \rangle$					Ļ
3		_																L
4																		
		8 8																F
5	19	11	S-15	17		W	SP	Same (PID=0	ppm)				 	• 				_567.
6		10									<u> </u>							-
7		-							End of Boring at 36'									╞
зĻ		-																F
╞┝		-																F
۶Ļ		-														 		_562.
1																		
2																		ſ
																		ſ
3		-																F
4		-																-
5		-														· · <i>· · · · · ·</i> ·	. <i>.</i>	_557.
6_							·		•									F
7		-																L
вĻ																		L
																		[
												• • • • • • • •						_552.
1												-					. ·	-
2																		F
3		-																F
4																		Ļ
5		_										<u></u>	<u></u>	<u></u>				_547.
MA	RKS:	NOTE:	Contir	nuous	sampl	ling wa	as not pe	erformed betwee	en the 30' to 34' depth interval.									

BORING LOG 6310.01.GPJ TECTONIC ENG.GDT 8/17/15

TECTONIC CONSULTANTS P.C.									PROJECT: Horace Nye Nursing Home						······				
LOCATIO									Elizabethtown, NY				SHEET No. 1 of 2						
CLIENT: Essex County									DZ H	DATE	TIM		DEPTH	INSPECTOR	<u>ং</u> Chris	Callinan	1		
CONTRACTOR: QCQA Laboratories, Inc.									GROUND WATER	7/21/2015	09:05	09:05		DRILLER: John Leonhardt					
METHOD OF ADVANCING BORING DIA. DI												SURFACE ELEVATION: 595.0							
POWER AUGER: 4 1/4" 0					TO 30' MON. WELL YES] NO									
ROT, DRILL:					TO SCREEN DEPTH: 15' TO					30' DATE START: 7/20/15									
CASING:											75° F	DATE FINIS		21/15					
SPLIT SPOON: 2" 0				0	то 30'	DEPTH TO ROCK: Not Encountered				d'	UNCONFINED COMPRESS. STRENGTH (TONS/FT)								
550X Central Mine Equipment equipped w/ safety hammer								r	*CHANGES IN STRATA ARE INFERRED										
(.)	N OR MIN./FT.				PLES		ss.	DESCRIPTI			N		5⊀	PLASTIC LIMIT %					
DEPTH (FT.)		PENETRATION RESISTANCE (BL/6 IN.)	REC		.00		IFIED CLAS		OF			LITHOLOGY*							
DEPT			SAMPLE NUMBER	ENGTH (IN.)	RaD (%)	OIST	UNIFIED SOIL CLASS.	MATERIAL				HE	STANDARD PENETRATION (BLOWS/FT.)				Ē		
	z		ωz	Ē	αŬ	ž								10 2		40 5	0		
1	40	WOH 6	6.1			D	SM	3" Asphalt		e f Gravel, tr	ace Clav	vev Sil						Ļ	
	- 16	10	S-1	11) 5M	(PID=0ppr	n)			, . , . , . , . , . , . , . , . , . , .							
2		5																-	
3	- 8	4 - S-2 2 0 No Recover cutting shore					e blocked with gravel pieces									-			
4		5																F	
5	- 27	9	S-3	19		м	SM	Bwn c-f S/ Silt (PID=(e c-f Gravel,	c-f Gravel, trace Clayey							_590	
6		18 19							phu)									Ļ	
7		21 25						0 /D/)									Ĺ	
	- 43	18	S-4	16		м	SM	Same (PII	J=Uppm)	1									
8		13 5																F	
9	- 13	6 -	S-5	19		м	SP		Tn-bwn c-f SAND, trace f Gravel, tra Silt (PID=0ppm)				y	•				-	
10		6						, ,	,									_585	
11	- 11	5	S-6	18		м	SP	Gv c-f SAI	Gy c-f SAND, trace Clayey Silt (PID=0ppm)									Ļ	
12		6 6																-	
		3 5						Gv c-f SAI	ND. trace	e f Gravel, tr	ace Clav	/ev Silt							
13	- 11	6	S-7	19		м	SP	(PID=0ppr	ID, trace f Gravel, trace Clayey Silt n)										
14		8																F	
15	- 16	8 -	S-8	15.5		м	SM	Bwn-tn c-f Silt (PID=0	SAND, I)ppm)	SAND, little c-f Gravel, trace Clay				····· • •				L580	
16		-8 10					•		,									╞	
17	- 16	7	S-9	15		М	SP			trace Clayey	Silt							-	
18		9 11						(PID=0ppr	n)	ו)				/				L	
		4				м	SP	Bwn c-f S	AND, tra	ce Clayey S	ilt								
. 19	- 11	6	S-10	16 -		w	SP .	Bottom 5"	5" Wet (PID=0ppm)							*		[
20		8		<u> </u>					•	ce Silty Clay	,					• • • • • • • • • • • •		_575	
21	- 9	5	S-11	24		w	SP	Bottom 10	" Gy c-f	SAND, trace		ay						<u></u> +.	
22		11		ļ				(PID=0ppr	11)									╞	
23	- 22	4	S-12	18		w	SP			, trace Silty	Clay							Ļ	
24		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(PID=0ppi						/	1						
		2																570	
25 REM			he fir	1 st 18 te	24 inc	hes c	of soil ir	ı 1 this borina i	s likely re	e-worked nati	ve mater	ial due	to its pro	ximity to the	surface.		<u></u>	F010	

	PROJECT No. 6310.01	BORING No. B-5							
TECTONIC ENGINEERING & SURVEYING CONSULTANTS P.C.	PROJECT: Horace Nye Nursing Home	BORING NO. B-3							
	LOCATION: Elizabethtown, NY	SHEET No. 2 of 2							
CLIENT: Essex County		UNCONFINED COMPRESS. STRENGTH (TONS/FT)							
CONTRACTOR: QCQA Laboratories, Inc.		1 2 3 5 1							
Image: Samples Samples Image: Samples Samples </td <td>DESCRIPTION</td> <td></td>	DESCRIPTION								
DEPTH (FT.) N OR MIN./FT. PENETRATION RESISTANCE (BL/6 IN.) SAMPLE (IN.) SAMPLE NUMBER (IN.) (N.) (N.) (N.) (N.) (N.) (N.) (N.) (OF								
DEPTH (FT.) N OR MIN./FT. PENETRATION RESISTANCE (BL/G III,) SAMPLE NUMBER NUMBER NUMBER (IN.) SAMPLE (IN.) SAMPLE (IN.) SAMPLE (IN.) SAMPLE NUMBER NUMBER SAMPLE S	MATERIAL	* PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT % X							
11 6 S-13 12 W SP	Same (PID=0ppm)								
26 9									
27 - 39 18 - S-14 21 W SP 28 16	Bwn-gy c-f SAND, trace f Gravel, trace Clay Silt (PID=0ppm)	ey							
29 - 11 6 - S-15 20 W SP	Gy m-f SAND, trace Clayey Silt (PID=0ppm)								
30 <u>6</u> 31	End of Boring at 30'	565.0							
32									
33									
34									
35									
36									
37									
39									
40		555.0							
41									
42									
43									
44									
45									
46									
47									
48									
49	¹² 5								
50									
51									
52	17								
53									
54									
55 REMARKS		540.0							

BORING LOG 6310.01.GPJ TECTONIC ENG.GDT 8/17/15

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Office of Environmental Quality, Region 5 1115 State Route 86, PO Box 296, Ray Brook, NY 12977 P: (518) 897-1241 (F: (518) 897-1245 www.dec.ny.gov

Broinfull \$

March 30, 2016

Quel PRIMIERS?

Joe Corradino Essex Center for Rehab & HealthCare PO Box 127 Elizabethtown, NY 12932-0217

RE: Review of Subsurface Investigation Report (SIR) Essex Center (former Horace Nye Nursing Home) Wastewater Treatment System; SPDES No. NY 012-9313 Elizabethtown (T), Essex County

Dear Mr. Corradino:

The New York State Department of Environmental Conservation (the "Department") has received (02/19/16 CD) and reviewed the above-referenced SIR. The SIR was provided by the County's consultant and presents the July 2015 sample results from the five monitoring wells which were installed in the perimeter of the Essex Center seepage pits to determine possible impacts of the treatment system on groundwater.

The Department supports the recommendations made in section 5.0 of the SIR in accordance with the following required modifications to the proposed scope of work:

- 1. The sediments/sludges in the two northwestern seepage pits of Outfall 001 which were not previously investigated must be analyzed for Total Metals, Semivolatile & Volatile Organic compounds and Total Phenolics. This must be done and results provided to the Department by June 30, 2016.
- 2. Sediments/sludges must be removed from all 16 seepage pits which had exceedances of the Department's Protection of Groundwater Soil Cleanup Objectives, including the two aforementioned seepage pits if warranted. This must be done and confirmed in writing to the Department by September 30, 2016.
- 3. After the sediment and sludge removal is completed (beginning October 1, 2016), groundwater monitoring of all wells must be repeated as follows:
 - Further <u>groundwater</u> sampling must be done using methods approved under <u>40 CFR</u> <u>136</u>, rather than Hazardous Waste test methods, in order for the results to be evaluated using 6 NYCRR Parts 700-706 the NYS Ambient Surface Water and Groundwater Classifications and Standards
 - Ongoing groundwater monitoring shall include complete scans for Priority Pollutants Total Metals, Semivolatile & Volatile Organics and Total Phenolics (not restrict analysis to the analytes detected thus far)

C Department of Environmental Conservation Joe Corradino Re: Essex Center March 30, 2016 Page 2

- Ongoing monitoring should occur *quarterly* for two years to account for any seasonal fluctuations in the groundwater table with reports of results submitted quarterly to the Department.
- 4. The Item #7 discussion in the SIR Findings and Conclusions should have acknowledged the historic use of toluene-containing products at the nursing home as a possible source of the detected toluene (as described in correspondence from the nursing home to the Department dated March 20, 2012).
- 5. The groundwater monitoring well locations were sited based upon topographic location relative to the seepage pits. The Department advises that future monitoring reports include a groundwater contour map and discussion of to what extent groundwater mounding from the septic system impacts direction of groundwater flow.
- 6. This facility is advised to confirm in writing to the Department by April 30, 2016 that floor drains in the nursing home boiler rooms have been sealed and that any discharges from the Buildings & Grounds Maintenance Facility to onsite seepage pits have ceased.

Following the conclusion of the two year sampling and analysis program, the Department will consider changes to the sampling frequency, target compound list and the monitoring well list. If you have questions or comments please contact me.

Sincerely,

Tamara J. Venne Environmental Program Specialist 1

c: <u>NYSDEC</u>:

R. Wagner, RE R. Huyck, PE T. Waite, EE R. Garry, EPS

Essex County: W. Ferebee, Chairman Board of Supervisors D. Manning, Essex County Attorney K. Garbarino, Tectonic Engineering

Permittee:

I. Friedenberg, Essex Land Associates, LLC

B. Diamond, Centers for Specialty Care

G. Menegio, Environscience Consultants, Inc.

NYSDOH:

S. Kennedy, PE

